• Users Online: 277
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Contacts Login 


 
 Table of Contents  
CLINICAL CASE REPORT
Year : 2021  |  Volume : 34  |  Issue : 2  |  Page : 88-89

Corynebacterium striatum: An emerging nosocomial skin and soft-tissue pathogen


1 Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
2 Department of Surgery, All India Institute of Medical Sciences, New Delhi 110029, India

Date of Web Publication28-Sep-2021

Correspondence Address:
Benu Dhawan
Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-258X.326750

  Abstract 

The genus Corynebacterium is composed of Gram-positive, aerobic, non-motile, non-spore-forming bacilli that are widely distributed throughout the environment. They are usually found as commensals on the skin and are often considered as mere contaminants when isolated from clinical samples. We describe a patient with skin and soft-tissue infections due to Corynebacterium striatum following exploratory laparotomy identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The clinical importance and pathogenic potential of Corynebacterium species, especially C. striatum, cannot be underestimated. This report is a reminder to physicians of the possible pathogenicity of non-diphtherial Corynebacteria.


How to cite this article:
Agrawal SK, Khullar S, Srivastava A, Kapil A, Dhawan B. Corynebacterium striatum: An emerging nosocomial skin and soft-tissue pathogen. Natl Med J India 2021;34:88-9

How to cite this URL:
Agrawal SK, Khullar S, Srivastava A, Kapil A, Dhawan B. Corynebacterium striatum: An emerging nosocomial skin and soft-tissue pathogen. Natl Med J India [serial online] 2021 [cited 2021 Oct 23];34:88-9. Available from: http://www.nmji.in/text.asp?2021/34/2/88/326750


  Introduction Top


The genus Corynebacterium is composed of Gram-positive, aerobic, non-spore-forming bacilli.[1] These are usually found as commensals on the skin and are often considered as mere contaminants when isolated from clinical samples. However, multiple studies have shown that certain species of Corynebacterium become pathogenic to humans under special conditions.[2]

Corynebacterium striatum (C. striatum) is an opportunistic pathogen, often multidrug-resistant, which has been associated with serious infections in humans.[3],[4],[5] Cases of skin and soft-tissue infections caused by C. striatum are rarely reported. We describe a patient with skin and soft-tissue infections due to C. striatum following exploratory laparotomy identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF).


  The Case Top


A 78-year-old woman who had diabetes and hypertension presented to the surgical outpatient department of our hospital with a history of swelling and pain on the right side of her abdomen for 2 days. She had not passed flatus for 1 day and stool for 2 days. She also had a history of 5–6 episodes of non-projectile vomiting. Local examination revealed an 8 cm×8 cm non-reducible right paramedian swelling with no cough impulse. The abdomen was soft and non-tender. A diagnosis of strangulated right paramedian incisional hernia was made. The patient underwent exploratory laparotomy. Distal ileal resection and anastomosis with midline sheath closure and closure of the paramedian hernial defect were done. On postoperative day 4, she developed fever, pain and purulent discharge from the surgical site, for which the midline wound was opened and pus drained. The drained pus was sent for microbiological investigations. Initial laboratory investigations revealed a total leucocyte count of 9900/cmm, which later increased to 20 000/ cmm with 82.3% polymorphonuclear leucocytes. Systemic examination was unremarkable, and no other focus of infection could be identified. After two sets of blood cultures were obtained, empirical treatment with parenteral cefoperazone–sulbactam (2 g twice daily) was started. Despite medications, the condition of the patient deteriorated. On postoperative day 7, copious amount of pus was drained from the operative site. Blood culture obtained on this occasion was sterile. Gram stain of the pus revealed numerous polymorphonuclear leucocytes and Gram-positive bacilli. Pus culture grew non-haemolytic cream-coloured colonies on 5% sheep blood agar [Figure 1]. Gram stain of the colonies again showed Gram-positive bacilli, morphologically resembling diphtheroids. Considering diphtheroids as commensals of the skin, the colonies were not processed further, and the report was dispatched with a request for a repeat specimen. However, similar bacterial colonies in pure culture grew from two consecutive pus samples, suggestive of probable association of bacteria with the surgical site infection. The organism was confirmed as C. striatum by MALDI-TOF mass spectrometry using the Biomérieux VITEK MS system (IVD database version 2.0) (USA), and antimicrobial susceptibility was performed. The organism was found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, but resistant to penicillin, clindamycin, erythromycin, trimethoprim–sulphamethoxazole and cefoperazone–sulbactam. The patient was given injection vancomycin 1 mg i.v. twice daily, and she responded to the therapy. On follow-up, the abdominal wound was completely dry and healed.
Figure 1: Non-haemolytic cream-coloured colonies on 5% sheep blood agar

Click here to view



  Discussion Top


Non-diphtheritic Corynebacteria when isolated from clinical specimens are often considered as contaminants. Although correctly identifying Corynebacterium species has been challenging, with the use of MALDI-TOF mass spectrometry in routine diagnostics, correct identification up to species level has been possible. Nonetheless, isolation of this organism presents challenging scenarios to the microbiologist to determine its clinical significance. Clinical and laboratory criteria to determine the clinical importance of non-diphtherial corynebacteria are given in [Table 1].[6]
Table 1: Clinical and laboratory criteria to determine the clinical importance of non-diphtherial corynebacteria

Click here to view


Several lines of evidence suggest that C. striatum isolated in this patient was pathogenic and responsible for the skin and soft-tissue infections, isolation of pathogen in pure culture on repeated cultures, definitive evidence of presence of infection, absence of any other focus of infection and infection responding to treatment.

Wound infections caused by C. striatum are often due to exogenous bacterial flora that penetrate into a site of injury, which could be the possible source of infection in our patient. Prolonged duration of hospitalization, chronic diabetes mellitus, administration of antibiotics and exposure to an invasive procedure have been recognized as risk factors for C. striatum infection.[6] Chronic diabetes mellitus and prior surgery could be risk factors in our patient.

This organism is a multidrug-resistant pathogen with varied susceptibility profile amongst the isolates underscoring the importance of susceptibility testing.[7] Our isolate was also multidrug-resistant.

Conclusion

This report is a reminder to physicians of the possible pathogenicity of non-diphtherial Corynebacteria. We recommend that all pure cultures of diphtheroids be identified to the species level and their antimicrobial susceptibility be done so as to initiate prompt and appropriate treatment for a successful outcome.

Perioperative vigilance, timely submission of properly obtained cultures, rapid identification of the pathogen by MALDI-TOF mass spectrometry and treatment with appropriate antibiotics were responsible for the successful outcome in our patient.

Conflicts of interest. None declared

 
  References Top

1.
Funke G, von Graevenitz A, Clarridge JE 3rd, Bernard KA. Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 1997;10:125–59.  Back to cited text no. 1
    
2.
Lee PP, Ferguson DA Jr, Sarubbi FA. Corynebacterium striatum: An underappreciated community and nosocomial pathogen. J Infect 2005;50:338–43.  Back to cited text no. 2
    
3.
Adderson EE, Boudreaux JW, Hayden RT. Infections caused by coryneform bacteria in pediatric oncology patients. Pediatr Infect Dis J 2008;27:136–41.  Back to cited text no. 3
    
4.
Tarr PE, Stock F, Cooke RH, Fedorko DP, Lucey DR. Multidrug-resistant Corynebacterium striatum pneumonia in a heart transplant recipient. Transpl Infect Dis 2003;5:53–8.  Back to cited text no. 4
    
5.
Weiss K, Labbé AC, Laverdière M. Corynebacterium striatum meningitis: Case report and review of an increasingly important Corynebacterium species. Clin Infect Dis 1996;23:1246–8.  Back to cited text no. 5
    
6.
Leal SM Jr, Jones M, Gilligan PH. Clinical significance of commensal Gram-positive rods routinely isolated from patient samples. J Clin Microbiol 2016;54: 2928–36.  Back to cited text no. 6
    
7.
Biswal I, Mohapatra S, Deb M, Dawar R, Gaind R. Corynebacterium striatum: An emerging nosocomial pathogen in a case of laryngeal carcinoma. Indian J Med Microbiol 2014;32:323–4.  Back to cited text no. 7
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
The Case
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed173    
    Printed6    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]